Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: A comparison study in a clinical setting

Neuroimage Clin. 2016 Aug 9:15:274-283. doi: 10.1016/j.nicl.2016.08.005. eCollection 2017.

Abstract

Introduction/purpose: In vivo detection of cerebral microbleeds (CMBs) from T2* gradient recalled echo (GRE) magnitude image suffers from low specificity, modest inter-rater reproducibility and is biased by its sensitivity to acquisition parameters. New methods were proposed for improving this identification, but they mostly rely on 3D acquisitions, not always feasible in clinical practice. A fast 2D phase processing technique for computing internal field maps (IFM) has been shown to make it possible to characterize CMBs through their magnetic signature in routine clinical setting, based on 2D multi-slice acquisitions. However, its clinical interest for CMBs identification with respect to more common images remained to be assessed. To do so, systematic experiments were undertaken to compare the ratings obtained by trained observers with several image types, T2* magnitude, Susceptibility Weighted Imaging reconstructions (SWI) and IFM built from the same T2*-weighted acquisition.

Materials/methods: 15 participants from the MEMENTO multi-center cohort were selected: six subjects with numerous CMBs (20 ± 6 CMBs), five subjects with a few CMBs (2 ± 1 CMBs) and four subjects without CMB. 2D multi-slice T2* GRE sequences were acquired on Philips and Siemens 3T systems. After pilot experiments, T2* magnitude, Susceptibility Weighted Imaging (SWI) minimum intensity projection (mIP) on three slices and IFM were considered for the rating experiments. A graphical user interface (GUI) was designed in order to consistently display images in random order. Six raters of various background and expertise independently selected "definite" or "possible" CMBs. Rating results were compared with respect to a specific consensus reference, on both lesion and subject type points of view.

Results: IFM yielded increased sensitivity and decreased false positives rate (FPR) for CMBs identification compared to T2* magnitude and SWI-mIP images. Inter-rater variability was decreased with IFM when identifying subjects with numerous lesions, with only a limited increase in rating time. IFM thus appears as an interesting candidate to improve CMBs identification in clinical setting.

Keywords: Magnetic susceptibility; Microbleeds; Phase MRI; SWI.

Publication types

  • Comparative Study
  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cerebral Hemorrhage / diagnostic imaging*
  • Humans
  • Image Interpretation, Computer-Assisted / methods
  • Image Interpretation, Computer-Assisted / standards*
  • Image Processing, Computer-Assisted / methods
  • Image Processing, Computer-Assisted / standards*
  • Magnetic Resonance Imaging / methods
  • Magnetic Resonance Imaging / standards*
  • Reproducibility of Results
  • Sensitivity and Specificity