Knowing how RNAs interact with themselves and with others is key to understanding RNA based gene regulation in the cell. While examples of RNA-RNA interactions such as microRNA-mRNA interactions have been shown to regulate gene expression, the full extent to which RNA interactions occur in the cell is still unknown. Previous methods to study RNA interactions have primarily focused on subsets of RNAs that are interacting with a particular protein or RNA species. Here, we detail a method named Sequencing of Psoralen crosslinked, Ligated, and Selected Hybrids (SPLASH) that allows genome-wide capture of RNA interactions in vivo in an unbiased manner. SPLASH utilizes in vivo crosslinking, proximity ligation, and high throughput sequencing to identify intramolecular and intermolecular RNA base-pairing partners globally. SPLASH can be applied to different organisms including bacteria, yeast and human cells, as well as diverse cellular conditions to facilitate the understanding of the dynamics of RNA organization under diverse cellular contexts. The entire experimental SPLASH protocol takes about 5 days to complete and the computational workflow takes about 7 days to complete.