The goal of this study was to develop floating microspheres that could be used as gastroretentive systems for the delivery of anthocyanins (ACNs). These compounds are absorbed in the stomach and small intestine, and insufficient residence time in these organs could result in limited absorption and contribute to degradation. The microparticles containing freeze-dried haskap berry extract (321.96 ± 8.35 mg cyanidin 3-glucoside equivalents per g) were prepared by ionotropic gelation of alginate (9%, w/w) with calcium ions (CaCl2 at 2%, w/v) in the gelation bath, with calcium carbonate as the gas-generating compound (added at different ratios in the alginate/extract mixture). The effect of acetic acid concentration (2 and 10%, v/v) in the gelation medium was investigated. Increasing the carbonate : alginate weigh ratio from 0 to 3:4 resulted in different degrees of floatability, larger particles, higher encapsulation efficiency, and lower amount of ACN released. The power law equation fitted the experimental data well, indicating that release occurred mainly by diffusion. This is the first time floating microspheres are proposed as gastroretentive platforms for the delivery of ACNs.
Keywords: anthocyanin; encapsulation efficiency; gastroretentive system; low density; release.