In therapeutic research, the safety and efficacy of pharmaceutical products are necessarily tested on humans via clinical trials after an extensive and expensive preclinical development period. Methodologies such as computer modeling and clinical trial simulation (CTS) might represent a valuable option to reduce animal and human assays. The relevance of these methods is well recognized in pharmacokinetics and pharmacodynamics from the preclinical phase to postmarketing. However, they are barely used and are poorly regarded for drug approval, despite Food and Drug Administration and European Medicines Agency recommendations. The generalization of CTS could be greatly facilitated by the availability of software for modeling biological systems, by clinical trial studies and hospital databases. Data sharing and data merging raise legal, policy and technical issues that will need to be addressed. Development of future molecules will have to use CTS for faster development and thus enable better patient management. Drug activity modeling coupled with disease modeling, optimal use of medical data and increased computing speed should allow this leap forward. The realization of CTS requires not only bioinformatics tools to allow interconnection and global integration of all clinical data but also a universal legal framework to protect the privacy of every patient. While recognizing that CTS can never replace 'real-life' trials, they should be implemented in future drug development schemes to provide quantitative support for decision-making. This in silico medicine opens the way to the P4 medicine: predictive, preventive, personalized and participatory.