While stereotactic radiosurgery (SRS) has been shown effective in the management of brain metastases, small brain metastases (≤10 mm) can pose unique challenges. Our aim was to investigate the efficacy of SRS in the treatment of small brain metastases, as well as elucidate clinically relevant factors impacting local failure (LF). We utilized a large, single-institution cohort to perform a retrospective analysis of patients with brain metastases up to 1 cm in maximal dimension. Clinical and radiosurgical parameters were investigated for an association with LF and compared using a competing risk model to calculate cumulative incidence functions, with death and whole brain radiotherapy serving as competing risks. 1596 small brain metastases treated with SRS among 424 patients were included. Among these tumors, 33 developed LF during the follow-up period (2.4% at 12 months following SRS). Competing risk analysis demonstrated that LF was dependent on tumor size (0.7% if ≤2 mm and 3.0% if 2-10 mm at 12 months, p = 0.016). Other factors associated with increasing risk of LF were the decreasing margin dose, increasing maximal tumor diameter, volume, and radioresistant tumors (each p < 0.01). 22 tumors (0.78%) developed radiographic radiation necrosis following SRS, and this incidence did not differ by tumor size (≤2 mm and 2-10 mm, p = 0.200). This large analysis confirms that SRS remains an effective modality in treatment of small brain metastases. In light of the excellent local control and relatively low risk of toxicity, patients with small brain metastases who otherwise have a reasonable expected survival should be considered for radiosurgical management.
Keywords: Brain; Gamma knife; Metastasis; Radiosurgery; Size; Small.