Purpose: Muscle vasodilatation during exercise has been associated with cardiovascular health and may be influenced by genetic variability. The purpose of this study was to evaluate functional genetic polymorphisms of physiologic pathways related to the regulation of the cardiovascular function (alpha-adrenergic receptors, endothelial nitric oxide synthase and bradykinin B2 receptor) and exercise muscle vasodilatation in apparently healthy men and women.
Methods: We enrolled 689 individuals without established cardiovascular disease that had attended a check-up program. The vasodilatation was studied with venous occlusion plethysmography and determined by the increase of vascular conductance during handgrip exercise. Genotypes for ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C > T (rs553668), ADRA2B Del 301-303 (rs28365031), eNOS 786 T > C (rs2070744), eNOS Glu298Asp (rs1799983) and BDKRB2 (rs5810761) polymorphisms were assessed by polymerase chain reaction followed by high resolution melting analysis.
Results: The eNOS rs2070744 polymorphism was significantly associated with forearm vascular conductance during exercise in women. Women with CC genotype showed higher vasodilatation than carriers of TC and TT genotypes (p = 0.043). The ADRA2A rs553668 polymorphism was significantly associated with forearm vascular conductance during exercise in men. Men with TT genotype had higher vasodilatation than carriers of CT and CC genotypes (p = 0.025).
Conclusions: eNOS rs207074 polymorphism in women and ADRA2A rs553668 polymorphism in men were associated with the increase of forearm vascular conductance during handgrip exercise. These findings suggest that eNOS and ADRA2A genetic polymorphisms may be potential markers of exercise muscle vasodilatation.
Keywords: Alpha-adrenergic receptor; Bradykinin B2 receptor; Cardiovascular genetics; Endothelial nitric oxide synthase; Exercise; Forearm vascular conductance; Genetic polymorphism; Muscle vasodilatation.