Computational methods were used to generate and explore the crystal structure landscapes of the two alkaloids strychnine and brucine. The computed structures were analyzed and rationalized by correlating the modelling results to a rich pool of available experimental data. Despite their structural similarity, the two compounds show marked differences in the formation of solid forms. For strychnine only one anhydrous form is reported in the literature and two new solvates from 1,4-dioxane were detected in the course of this work. In contrast, 22 solid forms are so far known to exist for brucine, comprising two anhydrates, four hydrates (HyA - HyC and a 5.25-hydrate), twelve solvates (alcohols and acetone) and four heterosolvates (mixed solvates with water and alcohols). For strychnine it is hard to produce any solid form other than the stable anhydrate while the formation of specific solid state forms of brucine is governed by a complex interplay between temperature and relative humidity/water activity and it is rather a challenging to avoid hydrate formation. Differences in crystal packing and the high tendency for brucine to form hydrates are not intuitive from the molecular structure alone, as both molecules have hydrogen bond acceptor groups but lack hydrogen bond donor groups. Only the evaluation of the crystal energy landscapes, in particular the close-packed crystal structures and high-energy open frameworks containing voids of molecular (water) dimensions, allowed us to unravel the diverse solid state behavior of the two alkaloids at a molecular level. In this study we demonstrate that expanding the analysis of anhydrate crystal energy landscapes to higher energy structures and calculating the solvent-accessible volume can be used to estimate non-stoichiometric or channel hydrate (solvate) formation, without explicitly computing the hydrate/solvate crystal energy landscapes.
Keywords: brucine; crystal structure prediction; hydrates; strychnine; void analysis.