Urinary Extracellular Vesicles of Podocyte Origin and Renal Injury in Preeclampsia

J Am Soc Nephrol. 2017 Nov;28(11):3363-3372. doi: 10.1681/ASN.2016111202. Epub 2017 Jul 20.

Abstract

Renal histologic expression of the podocyte-specific protein, nephrin, but not podocin, is reduced in preeclamptic compared with normotensive pregnancies. We hypothesized that renal expression of podocyte-specific proteins would be reflected in urinary extracellular vesicles (EVs) of podocyte origin and accompanied by increased urinary soluble nephrin levels (nephrinuria) in preeclampsia. We further postulated that podocyte injury and attendant formation of EVs are related mechanistically to cellfree fetal hemoglobin (HbF) in maternal plasma. Our study population included preeclamptic (n=49) and normotensive (n=42) pregnant women recruited at delivery. Plasma measurements included HbF concentrations and concentrations of the endogenous chelators haptoglobin, hemopexin, and α1- microglobulin. We assessed concentrations of urinary EVs containing immunologically detectable podocyte-specific proteins by digital flow cytometry and measured nephrinuria by ELISA. The mechanistic role of HbF in podocyte injury was studied in pregnant rabbits. Compared with urine from women with normotensive pregnancies, urine from women with preeclamptic pregnancies contained a high ratio of podocin-positive to nephrin-positive urinary EVs (podocin+ EVs-to-nephrin+ EVs ratio) and increased nephrinuria, both of which correlated with proteinuria. Plasma levels of hemopexin, which were decreased in women with preeclampsia, negatively correlated with proteinuria, urinary podocin+ EVs-to-nephrin+ EVs ratio, and nephrinuria. Administration of HbF to pregnant rabbits increased the number of urinary EVs of podocyte origin. These findings provide evidence that urinary EVs are reflective of preeclampsia-related altered podocyte protein expression. Furthermore, renal injury in preeclampsia associated with an elevated urinary podocin+ EVs-to-nephrin+ EVs ratio and may be mediated by prolonged exposure to cellfree HbF.

Keywords: extracellular vesicles; podocyte; preeclampsia.

MeSH terms

  • Adult
  • Animals
  • Extracellular Vesicles*
  • Female
  • Humans
  • Kidney Diseases / urine*
  • Podocytes / ultrastructure*
  • Pre-Eclampsia / urine*
  • Pregnancy
  • Pregnancy Complications / urine
  • Rabbits