A Multi-Label Classification Approach for Coding Cancer Information Service Chat Transcripts

Proc Int Fla AI Res Soc Conf. 2013 May:2013:338-343.

Abstract

National Cancer Institute's (NCI) Cancer Information Service (CIS) offers online instant messaging based information service called LiveHelp to patients, family members, friends, and other cancer information consumers. A cancer information specialist (IS) 'chats' with a consumer and provides information on a variety of topics including clinical trials. After a LiveHelp chat session is finished, the IS codes about 20 different elements of metadata about the session in electronic contact record forms (ECRF), which are to be later used for quality control and reporting. Besides straightforward elements like age and gender, more specific elements to be coded include the purpose of contact, the subjects of interaction, and the different responses provided to the consumer, the latter two often taking on multiple values. As such, ECRF coding is a time consuming task and automating this process could help ISs to focus more on their primary goal of helping consumers with valuable cancer related information. As a first attempt in this task, we explored multi-label and multi-class text classification approaches to code the purpose, subjects of interaction, and the responses provided based on the chat transcripts. With a sample dataset of about 673 transcripts, we achieved example-based F-scores of 0.67 (for subjects) and 0.58 (responses). We also achieved label-based micro F-scores of 0.65 (for subjects), 0.62 (for responses), and 0.61 (for purpose). To our knowledge this is the first attempt in automatic coding of Live-Help transcripts and our initial results on the smaller corpus indicate promising future directions in this task.