Background and aims: This study aimed to evaluate the prevalence of the hepatitis C virus intergenotype recombinant strain RF1_2k/1b in Georgia, confirm viral recombination by full genome sequencing, and determine a genetic relationship with previously described recombinant hepatitis C viruses.
Methods: We retrospectively analysed data from 1421 Georgian patients with chronic hepatitis C. Genotyping was performed with the INNO-LiPA VERSANT HCV Genotype 2.0 Assay.
Results: Virus isolates were assigned to nonspecific hepatitis C genotypes 2a/2c (n = 387) as performed by sequencing of core and NS5B genes. Subsequently, sequencing results classified the core region as genotype 2k and the NS5B region as genotype 1b for 72% (n = 280) of genotype 2 patients, corresponding to 19.7% of hepatitis C patients in Georgia. Eight samples were randomly selected for full genome sequencing which was successful in 7 of 8 samples. Analysis of the generated consensus sequences confirmed that all 7 viruses were 2k/1b recombinants, with the recombination breakpoint located within 73-77 amino acids before the NS2-NS3 junction, similar to the previously described RF1_2k/1b virus. Phylogenetic analysis revealed clustering of the Georgian 2k/1b viruses and RF1_2k/1b, suggesting that they are genetically related.
Conclusions: The 19.7% prevalence of RF1_2k/1b in Georgia patients is far higher than has generally been reported to date worldwide. Identification of recombinants in low income countries with a high prevalence of HCV infection might be reasonable for choosing the most cost-effective treatment regimens.
Keywords: full genome sequencing; hepatitis C virus; phylogenetic analysis; recombinant genotype.
© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.