Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria

PLoS One. 2017 Aug 16;12(8):e0182819. doi: 10.1371/journal.pone.0182819. eCollection 2017.

Abstract

Background: Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance.

Methods: An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog.

Results: Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of glycerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples.

Conclusions: The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics phenotyping of P. vivax samples from patients with well-defined clinical CQ-resistance is promising for the development of new tools to understand the biological process and to identify potential biomarkers of PvCR.

MeSH terms

  • Adult
  • Asparagine / metabolism
  • Biomarkers
  • Chloroquine / pharmacology*
  • Chloroquine / therapeutic use
  • Cluster Analysis
  • Computational Biology / methods
  • Drug Resistance*
  • Female
  • Humans
  • Malaria, Vivax / blood*
  • Malaria, Vivax / diagnosis
  • Malaria, Vivax / drug therapy
  • Malaria, Vivax / parasitology*
  • Male
  • Membrane Lipids
  • Metabolic Networks and Pathways*
  • Metabolome*
  • Metabolomics* / methods
  • Middle Aged
  • Nucleotides / metabolism
  • Plasmodium vivax / drug effects*
  • Young Adult

Substances

  • Biomarkers
  • Membrane Lipids
  • Nucleotides
  • Asparagine
  • Chloroquine