O-(2-[18F]fluoroethyl)-L-tyrosine PET in gliomas: influence of data processing in different centres

EJNMMI Res. 2017 Aug 16;7(1):64. doi: 10.1186/s13550-017-0316-x.

Abstract

Background: PET using O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) is an established method for brain tumour diagnostics, but data processing varies in different centres. This study analyses the influence of methodological differences between two centres for tumour characterization with 18F-FET PET using the same PET scanner. Methodological differences between centres A and B in the evaluation of 18F-FET PET data were identified for (1) framing of PET dynamic data, (2) data reconstruction, (3) cut-off values for tumour delineation to determine tumour-to-brain ratios (TBR) and tumour volume (Tvol) and (4) ROI definition to determine time activity curves (TACs) in the tumour. Based on the 18F-FET PET data of 40 patients with untreated cerebral gliomas (20 WHO grade II, 10 WHO grade III, 10 WHO grade IV), the effect of different data processing in the two centres on TBRmean, TBRmax, Tvol, time-to-peak (TTP) and slope of the TAC was compared. Further, the effect on tumour grading was evaluated by ROC analysis.

Results: Significant differences between centres A and B were found especially for TBRmax (2.84 ± 0.99 versus 3.34 ± 1.13; p < 0.001), Tvol (1.14 ± 1.28 versus 1.51 ± 1.44; p < 0.001) and TTP (22.4 ± 8.3 min versus 30.8 ± 6.3 min; p < 0.001) and minor differences for TBRmean and slope. Tumour grading was not influenced by different data processing.

Conclusions: Variable data processing of 18F-FET PET in different centres leads to significant differences especially for TBRmax and Tvol. A standardization of data processing and evaluation is needed to make 18F-FET PET comparable between different centres.

Keywords: Brain tumours; Dynamic FET PET; FET PET; Tumour-to-brain ratios.