Objectives: In our previous study, we displayed that knockdown of Opa interacting protein 5 (OIP5) inhibited cell growth, disturbed cell cycle and increased cell apoptosis in bladder cancer (BC) cell line. Our present study aimed to explore the underlying pathways and interaction network involved in the roles of OIP5 in BC.
Methods: Microarray analysis was conducted to obtain mRNA expression profiling of OIP5 knockdown (shOIP5) and control (shCtrl) BC cell lines. Bioinformatics analyses were performed including differentially expressed mRNAs (DEGs) identification, protein-protein interaction network construction, biological functions of prediction and ingenuity pathways analysis (IPA). Western Blotting (WB) was subjected to validate the protein expression levels of candidate DEGs in shOIP5 BC cell line.
Results: Respective 255 up- and 184 down-regulated DEGs were identified in shOIP5 group compared with shCtrl group. In the PPI network, CAND1 and MYC had the highest connectivity with DEGs. 439 DEGs were significantly enriched in inflammatory response, regulation of cell proliferation, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and bladder cancer. In the disease and function enrichment, DEGs were obviously involved in cellular movement, cellular growth and proliferation, cancer, inflammatory response, cell death and survival. In the OIP5 regulatory network, CDH2, IRS1, IRAK3, ID1, TNF, IL6, ITGA6, MYC and SOD2 interacted with OIP5. The WB validation results were compatible with our bioinformatics analyses.
Conclusions: OIP5 interaction network might function as an oncogene in BC progression based on aberrant inflammatory responses. Our study might provide valuable information for investigation of tumorigenesis mechanism in BC.
Keywords: Bladder cancer; Microarray analysis; Network; Opa interacting protein 5.
Copyright © 2017 Elsevier GmbH. All rights reserved.