Elaborately designed novel multifunctional Janus nanoparticles (JNPs) have attracted considerable attention owing to their anisotropic surface properties and various functionalities that allow them to house several components for the detection and targeting of cancer cells. In this work, we report a novel and facile approach to synthesize Au/Fe3 O4 @C JNPs, which were further selectively functionalized with amino-poly(ethylene glycol)thiol (NH2 -PEG-SH) and folic acid (FA) on the exposed Au domains to achieve high contrast for X-ray computed tomography (CT) imaging, excellent stability, good biocompatibility, as well as cancer cell-specific targeting. Meanwhile, the other Fe3 O4 @C sides with mesoporous structure served as a drug delivery vehicle for doxorubicin (DOX), an efficient photothermal therapy (PTT) agent, and a magnetic resonance (MR) imaging contrast agent. Taking these features together, these unique multifunctional JNPs provide an intriguing nanoplatform for dual-modal CT and MR imaging-guided actively targeted chemo-photothermal synergistic cancer therapy.
Keywords: Janus nanoparticles; carbon; chemo-photothermal therapy; gold; magnetite.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.