Background: Programmed cell death 1 (PD1) inhibitors have recently shown promising anti-cancer effects in a number of solid tumor types. A predictive biomarker to this class of drugs has not been clearly identified; however, overexpression of the PD1 ligand (PD-L1) has shown particular promise in lung adenocarcinoma. In this study, we explore the staining characteristics, prevalence, and clinico-molecular correlates of PD-L1 overexpression in pancreatic ductal adenocarcinoma (PDAC).
Methods: A tissue microarray (TMA) was constructed from cases of resected PDAC. PD-L1 immunohistochemistry (IHC) was performed using the SP142 primary antibody. Immunohistochemical assessment for deficient mismatch repair status (MMRd), CD3 and CD8 were performed. All biomarkers were assessed independently by two anatomical pathologists and consensus achieved on all cases. Survival analysis was performed using three thresholds (> = 1%, >5% and >10%) for tumor cell membrane staining.
Results: Two-hundred fifty-two cases were included in the TMA and evaluable by IHC. Thirty-one (12%), 17 (7%), 12(5%) cases were positive at percentage cut offs of >0, >5, and >10% respectively. Increased PD-L1 expression was associated with inferior prognosis (p = 0.0367). No statistically significant association was identified between PD-L1 status and MMR status or tumor infiltrating lymphocytes.
Conclusions: This data suggests that there is an inverse relationship between PD-L1 expression and disease specific survival times in resected PDAC. Consequently, this association may represent a phenotype where increased PD-L1 expression has an effect on tumor biology and could therefore identify a subgroup where PD1 blockade could have enhanced effectiveness.
Keywords: Biomarkers; DNA mismatch repair; Immuno-oncology; Pancreatic cancer; Programmed cell death 1 ligand; Tumor-infiltrating lymphocytes.