MCM-48 mesoporous silica was successfully synthesized from silica gel extracted from rice husk ash and loaded by nickel oxide (Ni2O3). The resulted composite was characterized using X-ray diffraction, scanning electron microscope, and UV-vis spectrophotometer. The role of MCM-48 as catalyst support in enhancing the photocatalytic properties of nickel oxide was evaluated through the photocatalytic degradation of Congo red dye under visible light source. MCM-48 as catalyst support for Ni2O3 shows considerable enhancement in the adsorption capacity by 17% and 29% higher than the adsorption capacity of MCM-48 and Ni2O3, respectively. Additionally, the photocatalytic degradation percentage increased by about 64% relative to the degradation percentage using Ni2O3 as a single component. The adsorption mechanism of MCM-48/Ni2O3 is chemisorption process of multilayer form. The using of MCM-48 as catalyst support for Ni2O3 enhanced the adsorption capacity and the photocatalytic degradation through increasing the surface area and prevents the nickel oxide particles from agglomeration. This was done through fixing nickel oxide particles throughout the porous structure which providing more exposed active adsorption sites and active photocatalyst sites for the incident photons. Based on the obtained results, supporting of nickel oxide particles onto MCM-48 are promising active centers for the degradation of Congo red dye molecules.
Keywords: Catalyst support; Congo red dye; MCM-48; Ni(2)O(3); Photocatalyst; Rice husk ash.
Copyright © 2017 Elsevier Ltd. All rights reserved.