A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics

Adv Mater. 2017 Nov;29(41). doi: 10.1002/adma.201605242. Epub 2017 Sep 14.

Abstract

The last eight years (2009-2017) have seen an explosive growth of interest in organic-inorganic halide perovskites in the research communities of photovoltaics and light-emitting diodes. In addition, recent advancements have demonstrated that this type of perovskite has a great potential in the technology of light-signal detection with a comparable performance to commercially available crystalline Si and III-V photodetectors. The contemporary growth of state-of-the-art multifunctional perovskites in the field of light-signal detection has benefited from its outstanding intrinsic optoelectronic properties, including photoinduced polarization, high drift mobilities, and effective charge collection, which are excellent for this application. Photoactive perovskite semiconductors combine effective light absorption, allowing detection of a wide range of electromagnetic waves from ultraviolet and visible, to the near-infrared region, with low-cost solution processability and good photon yield. This class of semiconductor might empower breakthrough photodetector technology in the field of imaging, optical communications, and biomedical sensing. Therefore, here, the focus is specifically on the critical understanding of materials synthesis, design, and engineering for the next-stage development of perovskite photodetectors and highlighting the current challenges in the field, which need to be further studied in the future.

Keywords: dark current; detectivity; organic-inorganic halide perovskites; photodetectors; solution processable.

Publication types

  • Review