Background: Composite scales have recently been proposed as outcome measures for clinical trials. For example, the Prodromal Alzheimer's Cognitive Composite (PACC) is the sum of z-score normed component measures assessing episodic memory, timed executive function, and global cognition. Alternative methods of calculating composite total scores using the weighted sum of the component measures that maximize signal-to-noise of the resulting composite score have been proposed. Optimal weights can be estimated from pilot data, but it is an open question how large a pilot trial is required to calculate reliably optimal weights.
Methods: In this manuscript, we describe the calculation of optimal weights, and use large-scale computer simulations to investigate the question of how large a pilot study sample is required to inform the calculation of optimal weights. The simulations are informed by the pattern of decline observed in cognitively normal subjects enrolled in the Alzheimer's Disease Cooperative Study (ADCS) Prevention Instrument cohort study, restricting to n=75 subjects age 75 and over with an ApoE E4 risk allele and therefore likely to have an underlying Alzheimer neurodegenerative process.
Results: In the context of secondary prevention trials in Alzheimer's disease, and using the components of the PACC, we found that pilot studies as small as 100 are sufficient to meaningfully inform weighting parameters. Regardless of the pilot study sample size used to inform weights, the optimally weighted PACC consistently outperformed the standard PACC in terms of statistical power to detect treatment effects in a clinical trial. Pilot studies of size 300 produced weights that achieved near-optimal statistical power, and reduced required sample size relative to the standard PACC by more than half.
Conclusions: These simulations suggest that modestly sized pilot studies, comparable to that of a phase 2 clinical trial, are sufficient to inform the construction of composite outcome measures. Although these findings apply only to the PACC in the context of prodromal AD, the observation that weights only have to approximate the optimal weights to achieve near-optimal performance should generalize. Performing a pilot study or phase 2 trial to inform the weighting of proposed composite outcome measures is highly cost-effective. The net effect of more efficient outcome measures is that smaller trials will be required to test novel treatments. Alternatively, second generation trials can use prior clinical trial data to inform weighting, so that greater efficiency can be achieved as we move forward.