Physiological, morphological, and ecological tradeoffs influence vertical habitat use of deep-diving toothed-whales in the Bahamas

PLoS One. 2017 Oct 11;12(10):e0185113. doi: 10.1371/journal.pone.0185113. eCollection 2017.

Abstract

Dive capacity among toothed whales (suborder: Odontoceti) has been shown to generally increase with body mass in a relationship closely linked to the allometric scaling of metabolic rates. However, two odontocete species tagged in this study, the Blainville's beaked whale Mesoplodon densirostris and the Cuvier's beaked whale Ziphius cavirostris, confounded expectations of a simple allometric relationship, with exceptionally long (mean: 46.1 min & 65.4 min) and deep dives (mean: 1129 m & 1179 m), and comparatively small body masses (med.: 842.9 kg & 1556.7 kg). These two species also exhibited exceptionally long recovery periods between successive deep dives, or inter-deep-dive intervals (M. densirostris: med. 62 min; Z. cavirostris: med. 68 min). We examined competing hypotheses to explain observed patterns of vertical habitat use based on body mass, oxygen binding protein concentrations, and inter-deep-dive intervals in an assemblage of five sympatric toothed whales species in the Bahamas. Hypotheses were evaluated using dive data from satellite tags attached to the two beaked whales (M. densirostris, n = 12; Z. cavirostris, n = 7), as well as melon-headed whales Peponocephala electra (n = 13), short-finned pilot whales Globicephala macrorhynchus (n = 15), and sperm whales Physeter macrocephalus (n = 27). Body mass and myoglobin concentration together explained only 36% of the variance in maximum dive durations. The inclusion of inter-deep-dive intervals, substantially improved model fits (R2 = 0.92). This finding supported a hypothesis that beaked whales extend foraging dives by exceeding aerobic dive limits, with the extension of inter-deep-dive intervals corresponding to metabolism of accumulated lactic acid. This inference points to intriguing tradeoffs between body size, access to prey in different depth strata, and time allocation within dive cycles. These tradeoffs and resulting differences in habitat use have important implications for spatial distribution patterns, and relative vulnerabilities to anthropogenic impacts.

MeSH terms

  • Animals
  • Bahamas
  • Body Weight
  • Circadian Rhythm / physiology
  • Diving / physiology*
  • Ecosystem*
  • Feeding Behavior
  • Female
  • Least-Squares Analysis
  • Male
  • Models, Theoretical
  • Myoglobin / metabolism
  • Phylogeny
  • Satellite Communications
  • Species Specificity
  • Time Factors
  • Whales / anatomy & histology*
  • Whales / physiology*

Substances

  • Myoglobin

Grants and funding

The research reported here was financially supported by the United States (U.S.) Navy Office of Naval Research (grant N000140710120; www.onr.navy.mil), the Naval Facilities Engineering Command (grants N002441110021, N002441210007 and contract N6660413P2671; www.navfac.navy.mil), the Strategic Environmental Research and Development Program (award RC-2114; www.serdp.org), and the NOAA Fisheries Acoustic Program (http://www.nmfs.noaa.gov/pr/acoustics/). Graduate student funding support for the first author was provided by the U.S. National Science Foundation Graduate Research Fellowship Program (www.nsfgrfp.org). The funders had no role in study design, data collection, analysis, decision to publish, or preparation of the manuscript.