Imbedded Nanocrystals of CsPbBr3 in Cs4 PbBr6 : Kinetics, Enhanced Oscillator Strength, and Application in Light-Emitting Diodes

Adv Mater. 2017 Nov;29(43). doi: 10.1002/adma.201703703. Epub 2017 Oct 10.

Abstract

Solution-grown films of CsPbBr3 nanocrystals imbedded in Cs4 PbBr6 are incorporated as the recombination layer in light-emitting diode (LED) structures. The kinetics at high carrier density of pure (extended) CsPbBr3 and the nanoinclusion composite are measured and analyzed, indicating second-order kinetics in extended and mainly first-order kinetics in the confined CsPbBr3 , respectively. Analysis of absorption strength of this all-perovskite, all-inorganic imbedded nanocrystal composite relative to pure CsPbBr3 indicates enhanced oscillator strength consistent with earlier published attribution of the sub-nanosecond exciton radiative lifetime in nanoprecipitates of CsPbBr3 in melt-grown CsBr host crystals and CsPbBr3 evaporated films.

Keywords: excitonic kinetics; lead halide perovskites; light-emitting diodes; nanoinclusions; oscillator strength.