Accumulating evidence suggests that the dysregulation of long non-coding RNAs (lncRNAs) serves vital roles in the incidence and progression of lung cancer. However, the molecular mechanisms of LINC00968, a recently identified lncRNA, remain unknown. The objective of present study was to investigate the role of a prospective lncRNA-miRNA‑mRNA network regulated by LINC00968 in non-small cell lung cancer cells. Following the transfection of lentiviruses carrying LINC00968 into A549 cells, the microRNA (miRNA) expression profile of the cells in response to the overexpression of LINC00968 was detected using an miRNA microarray. Five differentially expressed miRNAs (DEMs) with LINC00968 overexpression were obtained, including miR-9-3p, miR‑22-5p, miR-668-3p, miR‑3675-3p and miR-4536-3p. Five target prediction algorithms and three target validation algorithms were used to obtain 1,888 prospective target genes of the five DEMs. The result of Gene Ontology analysis suggested that these five DEMs were involved in complex cellular pathways, which included intracellular transport, organelle lumen and nucleotide binding. Furthermore, analysis of Kyoto Encyclopedia of Genes and Genomes pathways indicated that the five DEMs were important regulators in the adherens junction and focal adhesion. An lncRNA-miRNA-mRNA regulatory network and a protein-protein interaction network were then constructed. Eventually, a prospective lncRNA‑miRNA-mRNA regulatory network of LINC00968, three miRNAs (miR-9, miR-22 and miR-4536) and two genes (polo-like kinase 1 and exportin-1) was obtained following validation in the Cancer Genome Atlas database. These results may provide novel insights to support future research into lncRNA in lung cancer.