Glycoprotein D (gD) of bovine herpesvirus-1 (BoHV-1) is essential for attachment and penetration of cells during infection and is a major target for neutralizing antibodies during an adaptive immune response. Currently there are no recombinant antibodies capable of binding gD epitopes for use in treating BoHV-1 infection. In this study, a bovine scFv gene derived from a hybridoma secreting monoclonal antibodies (McAbs) against the amino acid motif MEESKGYEPP of gD was expressed in E. coli. Molecular modeling, western blot and ELISA analysis showed that this scFv had a high affinity for BoHV-1 gD, with a Kd of 161.2 ± 37.58 nM and for whole BoHV-1 virus, with a Kd of 67.44 ± 16.99 nM. In addition, this scFv displayed a high affinity for BoHV-1 antigen in an ELISA and competed with BoHV-1 anti-serum in a competitive ELISA. Immunofluorescence assay (IFA) and laser confocal microscopy showed that this scFv could efficiently bind to and be internalized by BoHV-1 infected Madin-Darby bovine kidney (MDBK) cells. Importantly, this scFv was shown to inhibit BoHV-1 infectivity and to reduce the number of viral plaques by blocking viral attachment to MDBK cells. Our study suggests that this bovine single-chain antibody could be developed for use as a diagnostic and therapeutic agent against BoHV-1 infection in cattle.
Keywords: Binding affinity; Blocking viral attachment; Bovine herpesvirus-1; Glycoprotein D; Neutralizing epitope; Single chain Fv antibody; Virus neutralization.