Technological advances in profiling cells along genetic, anatomical and physiological axes have fomented interest in identifying all neuronal cell types. This goal nears completion in specialized circuits such as the retina, while remaining more elusive in higher order cortical regions. We propose that this differential success of cell type identification may not simply reflect technological gaps in co-registering genetic, anatomical and physiological features in the cortex. Rather, we hypothesize it reflects evolutionarily driven differences in the computational principles governing specialized circuits versus more general-purpose learning machines. In this framework, we consider the question of cell types in medial entorhinal cortex (MEC), a region likely to be involved in memory and navigation. While MEC contains subsets of identifiable functionally defined cell types, recent work employing unbiased statistical methods and more diverse tasks reveals unsuspected heterogeneity and adaptivity in MEC firing patterns. This suggests MEC may operate more as a generalist circuit, obeying computational design principles resembling those governing other higher cortical regions.