The entire pepsinogen C (PGC) coding sequence was determined by analysis of a series of five overlapping cDNA clones identified in a library constructed from human gastric mucosa poly(A+) RNA. A partial cDNA clone was initially identified using a 256-fold degenerate oligonucleotide probe for amino acid residues 4-12 of pepsin C, and subsequently 4 additional clones were identified upon rescreening with a probe complementary to the 5' region of the original cDNA clone. Northern analysis of gastric mucosa poly(A+) RNA with a PGC cDNA probe revealed an mRNA 1.5-kilobase species that was indistinguishable from that detected with a human pepsinogen A (PGA) cDNA probe. In contrast, the PGC and PGA cDNA probes detected distinct genomic restriction fragments indicating there was no detectable cross-hybridization under high stringency conditions. The PGC gene was localized to human chromosome 6 by analysis of a panel of human x mouse somatic cell hybrids. The regions containing the active site aspartyl groups of PGC are conserved in relationship to several other aspartic proteinases. We propose that the absence of detectable immunologic cross-reactivity between the two groups of human pepsinogens, A and C, results from divergent evolution of sequences located on the surface of the zymogens in contrast to the strongly conserved active site regions located within the binding cleft of the enzymes that are inaccessible for antigenic recognition.