Fluid milk quality in the United States has improved steadily over the last 2 decades, in large part due to the reduction in post-pasteurization contamination (PPC). Despite these improvements, some studies suggest that almost 50% of fluid milk still shows evidence of PPC with organisms that are able to grow at 6°C, even though PPC may be much less frequent in some facilities. Several gram-negative bacteria, when introduced as PPC, can grow rapidly at refrigeration temperatures around 6°C and can lead to bacterial levels above 20,000 cfu/mL (the regulatory limit for bacterial numbers in fluid milk in the United States) and spoilage that can be detected sensorially within 7 to 10 d of processing. Importantly, however, storage temperature can have a considerable effect on microbial growth, and fluid milk stored at 4°C and below may show considerably delayed onset of microbial growth and spoilage compared with samples stored at what may be considered mild abuse (6°C and above). Notable organisms that cause PPC and grow at refrigeration temperatures include psychrotolerant Enterobacteriaceae and coliforms, as well as Pseudomonas. These organisms are known to produce a variety of enzymes that lead to flavor, odor, and body defects that can ultimately affect consumer perception and willingness to buy. Detecting PPC in high temperature, short time, freshly pasteurized fluid milk can be challenging because PPC often occurs sporadically and at low levels. Additionally, indicator organisms typically used in fluid milk (i.e., coliforms) have been shown to represent only a fraction of the total PPC. Recent studies indicate that coliforms account for less than 20% of the total gram-negative organisms introduced into fluid milk after pasteurization. In contrast, Pseudomonas, which is not a coliform and therefore is not detected using coliform media, is the most commonly isolated genus in PPC fluid milk. To reduce PPC, processors must (1) use testing methods that can detect both coliforms and non-coliform gram-negatives (i.e., Pseudomonas) to understand true contamination rates and patterns, and (2) establish cleaning and sanitation protocols and employee and management behaviors that target persistent and transient PPC organisms.
Keywords: Enterobacteriaceae; Pseudomonas; fluid milk; post-pasteurization contamination; sanitation.
Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.