Objective: The aim of this study was to clarify the role of the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis in osteoclast accumulation, and the influence of orthodontic tooth movement (OTM) under mechanical force application to periodontal tissues, by administration of the CXCR4 antagonist AMD3100.
Design: The upper right first molar (M1) of rats was moved mesially with a 10-g force titanium-nickel closed coil spring. Rats were treated with phosphate-buffered saline or AMD3100 (5mg/kg), which is a SDF-1 antagonist. After 0, 1, 3, and 7days, alveolar bones in all groups were examined at each time point by micro-computed tomography and histological analysis.
Results: Tooth movement was decreased significantly in the AMD3100-treated group at 1, 3, and 7days after beginning OTM. The numbers of tartrate-resistant acid phosphatase-positive multinucleated cells in the periodontal ligament around the maxillary M1 were decreased significantly in the treated as compared to the control group on Days 1 and 3.
Conclusion: Administration of AMD3100 decreases OTM and osteoclast accumulation in rat molars under orthodontic force application. These findings suggest that the SDF-1/CXCR4 axis plays an important role in alveolar bone metabolism during OTM.
Keywords: AMD3100; Orthodontic tooth movement; Osteoclast; Periodontal ligament; Stromal cell-derived factor-1.
Copyright © 2017 Elsevier Ltd. All rights reserved.