Confocal Vessel Structure Segmentation with Optimized Feature Bank and Random Forests

IEEE Appl Imag Pattern Recognit Workshop. 2016 Oct:2016:10.1109/AIPR.2016.8010580. doi: 10.1109/AIPR.2016.8010580. Epub 2017 Aug 17.

Abstract

In this paper, we consider confocal microscopy based vessel segmentation with optimized features and random forest classification. By utilizing multi-scale vessel-specific features tuned to capture curvilinear structures such as Frobenius norm of the Hessian eigenvalues, Laplacian of Gaussians (LoG), oriented second derivative, line detector and intensity masked with LoG scale map. we obtain better segmentation results in challenging imaging conditions. We obtain binary segmentations using random forest classifier trained on physiologists marked ground-truth. Experimental results on mice dura mater confocal microscopy vessel segmentations indicate that we obtain better results compared to global segmentation approaches.