Understanding the interactions between biomolecules and nanomaterials is of great importance for many areas of nanomedicine and bioapplications. Although studies in this area have been performed, the interactions between cell membranes and nanoparticles are not fully understood. Here, we investigate the interactions that occur between the Langmuir monolayers of dipalmitoylphosphatidyl glycerol (DPPG) and dipalmitoylphosphatidyl choline (DPPC) with gold nanorods (NR)-with three aspect ratios-and gold nanoparticles. Our results showed that the aspect ratio of the NRs influenced the interactions with both monolayers, which suggest that the physical morphology and electrostatic forces govern the interactions in the DPPG-NR system, whereas the van der Waals interactions are predominant in the DPPC-NR systems. Size influences the expansion isotherms in both systems, but the lipid tails remain conformationally ordered upon expansion, which suggests phase separation between the lipids and nanomaterials at the interface. The coexistence of lipid and NP regions affects the elasticity of the monolayer. When there is coexistence between two phases, the elasticity does not reflect the lipid packaging state but depends on the elasticity of the NP islands. Therefore, the results corroborate that nanomaterials influence the packing and the phase behavior of the mimetic cell membranes. For this reason, developing a methodology to understand the membrane-nanomaterial interactions is of great importance.