Background: Genital herpes is an important cofactor for acquisition of human immunodeficiency virus (HIV) infection, and effective prophylaxis is a helpful strategy to halt both HIV and herpes simplex virus (HSV) transmission. The antiretroviral agent tenofovir, formulated as a vaginal microbicide gel, was shown to reduce the risk of HIV and HSV type 2 (HSV-2) acquisition.
Methods: HSV type 1 (HSV-1) and HSV-2 mutants were selected for resistance to tenofovir and PMEO-DAPy (6-phosphonylmethoxyethoxy-2,4-diaminopyrimidine, an acyclic nucleoside phosphonate with dual anti-HSV and anti-HIV activity) by stepwise dose escalation. Several plaque-purified viruses were characterized phenotypically (drug resistance profiling) and genotypically (sequencing of the viral DNA polymerase gene).
Results: Tenofovir resistant and PMEO-DAPy-resistant viruses harbored specific amino acid substitutions associated with resistance not only to tenofovir and PMEO-DAPy but also to acyclovir and foscarnet. These amino acid changes (A719V, S724N, and L802F [HSV-1] and M789T and A724V [HSV-2]) were also found in clinical isolates recovered from patients refractory to acyclovir and/or foscarnet therapy or in laboratory-derived strains. A total of 10 (HSV-1) and 18 (HSV-2) well-characterized DNA polymerase mutants had decreased susceptibility to tenofovir and PMEO-DAPy.
Conclusions: Tenofovir and PMEO-DAPy target the HSV DNA polymerase, and clinical isolates with DNA polymerase mutations emerging under acyclovir and/or foscarnet therapy showed cross-resistance to tenofovir and PMEO-DAPy.
Keywords: DNA polymerase; HIV; PrEP; herpes simplex virus; tenofovir.
© The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.