A Water-Stable Luminescent ZnII Metal-Organic Framework as Chemosensor for High-Efficiency Detection of CrVI -Anions (Cr2 O72- and CrO42- ) in Aqueous Solution

Chemistry. 2018 Mar 2;24(13):3192-3198. doi: 10.1002/chem.201705328. Epub 2018 Jan 4.

Abstract

A new luminescent ZnII -MOF with 1D triangular channels along the b axis, namely NUM-5, has been successfully assembled and well characterized, which features good stability, especially in aqueous solution. Interestingly, this compound exhibits a fast, sensitive and selective luminescence quenching response towards CrVI (Cr2 O72- /CrO42- ) in aqueous solution. The detection limits towards Cr2 O72- and CrO42- ions are estimated to be 0.7 and 0.3 ppm, respectively, which are among the lowest detection limits reported for the MOF-based fluorescent probes that can simultaneously detect Cr2 O72- and CrO42- in aqueous environment. The possible detection mechanism has been discussed in detail. Moreover, it can be easily regenerated after detection experiments, indicative of excellent recyclability. All these results suggest NUM-5 to be a highly selective and recyclable luminescent sensing material for the quantitative detection of CrVI anions in aqueous solution.

Keywords: chemosensor; hexavalent chromium; luminescence; metal-organic-framework; water.