We report the measurement of the beam-vector and tensor asymmetries A_{ed}^{V} and A_{d}^{T} in quasielastic (e[over →],e^{'}p) electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500 MeV/c. Data were collected simultaneously over a momentum transfer range 0.1<Q^{2}<0.5 (GeV/c)^{2} with the Bates Large Acceptance Spectrometer Toroid using an internal deuterium gas target polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry A_{ed}^{V} is found to be directly sensitive to the D-wave component of the deuteron and has a zero crossing at a missing momentum of about 320 MeV/c, as predicted. The tensor asymmetry A_{d}^{T} at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models.