Genotype-Specific Measles Transmissibility: A Branching Process Analysis

Clin Infect Dis. 2018 Apr 3;66(8):1270-1275. doi: 10.1093/cid/cix974.

Abstract

Background: Substantial heterogeneity in measles outbreak sizes may be due to genotype-specific transmissibility. Using a branching process analysis, we characterize differences in measles transmission by estimating the association between genotype and the reproduction number R among postelimination California measles cases during 2000-2015 (400 cases, 165 outbreaks).

Methods: Assuming a negative binomial secondary case distribution, we fit a branching process model to the distribution of outbreak sizes using maximum likelihood and estimated the reproduction number R for a multigenotype model.

Results: Genotype B3 is found to be significantly more transmissible than other genotypes (P = .01) with an R of 0.64 (95% confidence interval [CI], .48-.71), while the R for all other genotypes combined is 0.43 (95% CI, .28-.54). This result is robust to excluding the 2014-2015 outbreak linked to Disneyland theme parks (referred to as "outbreak A" for conciseness and clarity) (P = .04) and modeling genotype as a random effect (P = .004 including outbreak A and P = .02 excluding outbreak A). This result was not accounted for by season of introduction, age of index case, or vaccination of the index case. The R for outbreaks with a school-aged index case is 0.69 (95% CI, .52-.78), while the R for outbreaks with a non-school-aged index case is 0.28 (95% CI, .19-.35), but this cannot account for differences between genotypes.

Conclusions: Variability in measles transmissibility may have important implications for measles control; the vaccination threshold required for elimination may not be the same for all genotypes or age groups.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Binomial Distribution
  • California / epidemiology
  • Child
  • Disease Eradication
  • Disease Outbreaks*
  • Genotype
  • Humans
  • Likelihood Functions
  • Measles / epidemiology
  • Measles / prevention & control
  • Measles / transmission*
  • Measles / virology
  • Measles Vaccine / immunology*
  • Measles virus / genetics*
  • Measles virus / physiology
  • Models, Theoretical*
  • Species Specificity
  • Vaccination*

Substances

  • Measles Vaccine