In this study, we report the insertion sequence ISPpu21 in the oprD porin gene of carbapenem-resistant Pseudomonas aeruginosa isolates from burn patients in Tehran, Iran. Antibiotic susceptibility tests for P. aeruginosa isolates were determined. Production of metallo-β-lactamases (MBLs) and carbapenemase was evaluated and the β-lactamase-encoding and aminoglycoside-modifying enzyme genes were investigated by PCR and sequencing methods. The mRNA transcription level of oprD and mex efflux pump genes were evaluated by real-time PCR. The outer membrane protein profile was determined by SDS-PAGE. The genetic relationship between the P. aeruginosa isolates was assessed by random amplified polymorphic DNA PCR. In all, 10.52% (10/95) of clinical isolates of P. aeruginosa harboured the ISPpu21 insertion element in the oprD gene. The extended-spectrum β-lactamase-encoding gene in ISPpu21-carrying isolates was blaTEM. PCR assays targeting MBL and carbapenemase-encoding genes were also negative in all ten isolates. The rmtA, aadA, aadB and armA genes were positive in all ISPpu21 harbouring isolates. The relative expression levels of the mexX, mexB, mexT and mexD genes in ten isolates ranged from 0.1- to 1.4-fold, 1.1- to 3.68-fold, 0.3- to 8.22-fold and 1.7- to 35.17-fold, respectively. The relative expression levels of the oprD in ten isolates ranged from 0.57- to 35.01-fold, which was much higher than those in the control strain P. aeruginosa PAO1. Evaluation of the outer membrane protein by SDS-PAGE suggested that oprD was produced at very low levels by all isolates. Using random amplified polymorphic DNA PCR genotyping, eight of the ten isolates containing ISPpu21 were shown to be clonally related. The present study describes a novel molecular mechanism, ISPpu21 insertion of the oprD gene, associated with carbapenem resistance in clinical P. aeruginosa isolates.
Keywords: Burn; ISPpu21; OprD porin; Pseudomonas aeruginosa; carbapenem.