Impact of brain shift on subcallosal cingulate deep brain stimulation

Brain Stimul. 2018 Mar-Apr;11(2):445-453. doi: 10.1016/j.brs.2017.12.001. Epub 2017 Dec 6.

Abstract

Background: Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is an emerging experimental therapy for treatment-resistant depression. New developments in SCC DBS surgical targeting are focused on identifying specific axonal pathways for stimulation that are estimated from preoperatively collected diffusion-weighted imaging (DWI) data. However, brain shift induced by opening burr holes in the skull may alter the position of the target pathways.

Objectives: Quantify the effect of electrode location deviations on tractographic representations for stimulating the target pathways using longitudinal clinical imaging datasets.

Methods: Preoperative MRI and DWI data (planned) were coregistered with postoperative MRI (1 day, near-term) and CT (3 weeks, long-term) data. Brain shift was measured with anatomical control points. Electrode models corresponding to the planned, near-term, and long-term locations were defined in each hemisphere of 15 patients. Tractography analyses were performed using estimated stimulation volumes as seeds centered on the different electrode positions.

Results: Mean brain shift of 2.2 mm was observed in the near-term for the frontal pole, which resolved in the long-term. However, electrode displacements from the planned stereotactic target location were observed in the anterior-superior direction in both the near-term (mean left electrode shift: 0.43 mm, mean right electrode shift: 0.99 mm) and long-term (mean left electrode shift: 1.02 mm, mean right electrode shift: 1.47 mm). DBS electrodes implanted in the right hemisphere (second-side operated) were more displaced from the plan than those in the left hemisphere. These displacements resulted in 3.6% decrease in pathway activation between the electrode and the ventral striatum, but 2.7% increase in the frontal pole connection, compared to the plan. Remitters from six-month chronic stimulation had less variance in pathway activation patterns than the non-remitters.

Conclusions: Brain shift is an important concern for SCC DBS surgical targeting and can impact connectomic analyses.

Keywords: Connectomic; Electrode; Neurosurgery; Stereotactic; Tractography.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Brain / diagnostic imaging*
  • Brain / physiopathology
  • Deep Brain Stimulation / methods*
  • Depressive Disorder, Treatment-Resistant / diagnostic imaging
  • Depressive Disorder, Treatment-Resistant / therapy*
  • Diffusion Tensor Imaging
  • Electrodes, Implanted
  • Female
  • Humans
  • Male
  • Middle Aged