Molecular epidemiological studies revealed that the epicenter of the HIV pandemic was Kinshasa, the capital city of the Democratic Republic of the Congo (DRC) in Central Africa. All known subtypes and numerous complex recombinant strains co-circulate in the DRC. Moreover, high intra-subtype diversity has been also documented. During two previous surveys on HIV-1 antiretroviral drug resistance in the DRC, we identified two divergent subtype C lineages in the protease and partial reverse transcriptase gene regions. We sequenced eight near full-length genomes and classified them using bootscanning and likelihood-based phylogenetic analyses. Four strains are more closely related to subtype C although within the range of inter sub-subtype distances. However, these strains also have small unclassified fragments and thus were named CRF92_C2U. Another strain is a unique recombinant of CRF92_C2U with an additional small unclassified fragment and a small divergent subtype A fragment. The three remaining strains represent a complex mosaic named CRF93_cpx. CRF93_cpx have two fragments of divergent subtype C sequences, which are not conventional subtype C nor the above described C2, and multiple divergent subtype A-like fragments. We then inferred the time-scaled evolutionary history of subtype C following a Bayesian approach and a partitioned analysis using major genomic regions. CRF92_C2U and CRF93_cpx had the most recent common ancestor with conventional subtype C around 1932 and 1928, respectively. A Bayesian demographic reconstruction corroborated that the subtype C transition to a faster phase of exponential growth occurred during the 1950s. Our analysis showed considerable differences between the newly discovered early-divergent strains and the conventional subtype C and therefore suggested that this virus has been diverging in humans for several decades before the HIV/M diversity boom in the 1950s.
Keywords: HIV-1; Republic of the Congo; democratic; molecular epidemiology; phylogeny; subtype C.