Myozyme is a recombinant human acid alpha-glucosidase (rhGAA) that is currently the only drug approved for treating Pompe disease, and its low efficacy means that a high dose is required. Mannose-6-phosphate (M6P) glycosylation on rhGAA is a key factor influencing lysosomal enzyme targeting and the efficacy of enzyme replacement therapy (ERT); however, its complex structure and relatively small quantity still remain to be characterized. This study investigated M6P glycosylation on rhGAA using liquid chromatography (LC)-electrospray ionization (ESI)-high-energy collisional dissociation (HCD) tandem mass spectrometry (MS/MS). The glycans released from rhGAA were labeled with procainamide to improve mass ionization efficiency and the sensitivity of MS/MS. The relative quantities (%) of 78 glycans were obtained, and 1.0% of them were glycans containing M6P (M6P glycans). These were categorized according to their structure into 4 types: 3 newly found ones, comprising high-mannose-type M6P glycans capped with N-acetylglucosamine (GlcNAc) (2 variants, 17.5%), hybrid-type M6P glycans (2 variants, 11.2%), and hybrid-type M6P glycans capped with GlcNAc (3 variants, 6.9%), as well as high-mannose-type M6P glycans (3 variants, 64.4%). HCD-MS/MS spectra identified six distinctive M6P-derived oxonium ions. The glycopeptides obtained from protease-digested rhGAA were analyzed using nano-LC-ESI-HCD-MS/MS, and the extracted-ion chromatograms of M6P-derived oxonium ions confirmed three M6P glycosylation sites comprising Asn 140, Asn 233 (newly found), and Asn 470 attached heterogeneously to nine M6P glycans (two types), eight M6P glycans (four types), and seven M6P glycans (two types), respectively. This is the first study of rhGAA to differentiate M6P glycans and identify their attachment sites, despite rhGAA already being an approved drug for Pompe disease.
Keywords: Acid alpha-glucosidase; Glycan; High-energy collisional dissociation; M6P glycosylation site; Mannose-6-phosphate.
Copyright © 2017 Elsevier Inc. All rights reserved.