BackgroundLittle is known about the relationship between brain volumes and neurodevelopmental outcome at 2 years of age in children with single-ventricle congenital heart disease (CHD). We hypothesized that reduced brain volumes may be associated with adverse neurodevelopmental outcome.MethodsVolumetric segmentation of cerebral magnetic resonance imaging (MRI) scans was carried out in 44 patients without genetic comorbidities and in 8 controls. Neurodevelopmental outcome was assessed with the Bayley-III scales.ResultsGray matter (GM), deep GM, white matter (WM), and cerebrospinal fluid (CSF) volumes were 611±59, 43±4.5, 277±30, and 16.4 ml, respectively (interquartile range (IQR) 13.1, 23.3 ml). Children undergoing neonatal cardiopulmonary bypass surgery showed smaller deep GM (P=0.005) and WM (P=0.021) volumes. Brain volumes were smaller in patients compared with controls (GM: P=0.017, deep GM: P=0.012, and WM: P=0.015), whereas CSF volumes were greater (P=0.014). Of all intracranial volumes, only CSF volume was associated with neurodevelopmental outcome, accounting for 21% (P=0.011) of variability in the cognitive composite score when combined with common risk factors in a multivariable analysis.ConclusionIncreased CSF volume represents a significant risk factor for neurodevelopmental impairment in children with single-ventricle CHD. Later assessments are warranted to determine the prognostic role of intracranial volumes for long-term outcome.