We have previously shown that uroporphyrinogen is oxidized to uroporphyrin by microsomes (microsomal fractions) from 3-methylcholanthrene-pretreated chick embryo liver [Sinclair, Lambrecht & Sinclair (1987) Biochem. Biophys. Res. Commun. 146, 1324-1329]. We report here that a specific antibody to chick liver methylcholanthrene-induced cytochrome P-450 (P-450) inhibited both uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in chick-embryo liver microsomes. 3-Methylcholanthrene-pretreatment of rats and mice markedly increased uroporphyrinogen oxidation in hepatic microsomes as well as P-450-mediated ethoxyresorufin de-ethylation. In rodent microsomes, uroporphyrinogen oxidation required the addition of NADPH, whereas chick liver microsomes required both NADPH and 3,3',4,4'-tetrachlorobiphenyl. Treatment of rats with methylcholanthrene, hexachlorobenzene and o-aminoazotoluene increased uroporphyrinogen oxidation and P-450d, whereas phenobarbital did not increase either. The contribution of hepatic P-450c and P-450d to uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in methylcholanthrene-induced microsomes was assessed by using specific antibodies to P-450c and P-450d. Uroporphyrinogen oxidation by methylcholanthrene-induced rat liver microsomes was inhibited up to 75% by specific antibodies to P-450d, but not by specific antibodies to P-450c. In contrast, ethoxyresorufin de-ethylation was inhibited only 20% by anti-P450d but 70% by anti-P450c. Methylcholanthrene-induced kidney microsomes which contain P-450c but non P-450d did not oxidize uroporphyrinogen. These data indicate that hepatic P-450d catalyses uroporphyrinogen oxidation. We suggest that the P-450d-catalysed oxidation of uroporphyrinogen has a role in the uroporphyria caused by hexachlorobenzene and other compounds.