MiR-124 inhibits invasion and induces apoptosis of ovarian cancer cells by targeting programmed cell death 6

Oncol Lett. 2017 Dec;14(6):7311-7317. doi: 10.3892/ol.2017.7157. Epub 2017 Oct 10.

Abstract

Epithelial ovarian cancer remains the most common type of malignant tumor of the female reproductive system worldwide. Routine surgery and chemotherapy are the best treatments available for patients with ovarian cancer; however, almost 40% of ovarian cancer cases are intractable, with poor 5-year survival rates. MicroRNAs (miRNA) are endogenous small non-coding RNA molecules that function in transcriptional and post-transcriptional regulation of gene expression in various cellular processes. Recent studies demonstrated that microRNA (miR)-124 was downregulated in numerous types of tumors; however, the function and mechanism underlying miR-124 in epithelial ovarian cancer remain unclear. The present study revealed that miR-124 may be significantly downregulated in epithelial ovarian cancer. Using prediction algorithms and luciferase reporter gene assays, the present study identified and confirmed programmed cell death 6 (PDCD6) as a novel, direct target of miR-124. Overexpression of miR-124 suppressed PDCD6 expression, inhibited cell proliferation, migration and invasion, and induced apoptosis in SKOV3 and OCVAR3 cells in vitro. In the present study, overexpression of PDCD6 in epithelial ovarian cancer cells co-transfected with miR-124 effectively reversed the miR-124-induced apoptosis. Therefore, the results of the present study suggested that miR-124 is a tumor suppressor miRNA and a potential target for future treatment of ovarian malignant neoplasms.

Keywords: OCVAR3; SKOV3; apoptosis; cell migration; metastasis; miR-124; microRNA; ovarian cancer; programmed cell death 6.