Sequencing-based microbiome profiling aims at detecting and quantifying individual members of a microbial community in a culture-independent manner. While amplicon-based sequencing (ABS) of bacterial or fungal ribosomal DNA is the most widely used technology due to its low cost, it suffers from PCR amplification biases that hinder accurate representation of microbial population structures. Shotgun metagenomics (SMG) conversely allows unbiased microbiome profiling but requires high sequencing depth. Here we report the development of a meta-total RNA sequencing (MeTRS) method based on shotgun sequencing of total RNA and benchmark it on a human stool sample spiked in with known abundances of bacterial and fungal cells. MeTRS displayed the highest overall sensitivity and linearity for both bacteria and fungi, the greatest reproducibility compared to SMG and ABS, while requiring a ~20-fold lower sequencing depth than SMG. We therefore present MeTRS as a valuable alternative to existing technologies for large-scale profiling of complex microbiomes.