Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol-egg yolk-polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination ( R2), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between -0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.
Keywords: Bacillus cereus; Beans; Cooling; Dynamic model; Predictive microbiology.