Adapting the Elixhauser comorbidity index for cancer patients

Cancer. 2018 May 1;124(9):2018-2025. doi: 10.1002/cncr.31269. Epub 2018 Feb 1.

Abstract

Background: This study was designed to adapt the Elixhauser comorbidity index for 4 cancer-specific populations (breast, prostate, lung, and colorectal) and compare 3 versions of the Elixhauser comorbidity score (individual comorbidities, summary comorbidity score, and cancer-specific summary comorbidity score) with 3 versions of the Charlson comorbidity score for predicting 2-year survival with 4 types of cancer.

Methods: This cohort study used Texas Cancer Registry-linked Medicare data from 2005 to 2011 for older patients diagnosed with breast (n = 19,082), prostate (n = 23,044), lung (n = 26,047), or colorectal cancer (n = 16,693). For each cancer cohort, the data were split into training and validation cohorts. In the training cohort, competing risk regression was used to model the association of Elixhauser comorbidities with 2-year noncancer mortality, and cancer-specific weights were derived for each comorbidity. In the validation cohort, competing risk regression was used to compare 3 versions of the Elixhauser comorbidity score with 3 versions of the Charlson comorbidity score. Model performance was evaluated with c statistics.

Results: The 2-year noncancer mortality rates were 14.5% (lung cancer), 11.5% (colorectal cancer), 5.7% (breast cancer), and 4.1% (prostate cancer). Cancer-specific Elixhauser comorbidity scores (c = 0.773 for breast cancer, c = 0.772 for prostate cancer, c = 0.579 for lung cancer, and c = 0.680 for colorectal cancer) performed slightly better than cancer-specific Charlson comorbidity scores (ie, the National Cancer Institute combined index; c = 0.762 for breast cancer, c = 0.767 for prostate cancer, c = 0.578 for lung cancer, and c = 0.674 for colorectal cancer). Individual Elixhauser comorbidities performed best (c = 0.779 for breast cancer, c = 0.783 for prostate cancer, c = 0.587 for lung cancer, and c = 0.687 for colorectal cancer).

Conclusions: The cancer-specific Elixhauser comorbidity score performed as well as or slightly better than the cancer-specific Charlson comorbidity score in predicting 2-year survival. If the sample size permits, using individual Elixhauser comorbidities may be the best way to control for confounding in cancer outcomes research. Cancer 2018;124:2018-25. © 2018 American Cancer Society.

Keywords: Charlson comorbidity score; Elixhauser comorbidity score; National Cancer Institute combined index; comorbidity; confounding control.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Cohort Studies
  • Comorbidity*
  • Female
  • Health Status Indicators*
  • Humans
  • Male
  • Medicare / statistics & numerical data
  • Neoplasms / epidemiology*
  • Prognosis
  • Retrospective Studies
  • Risk Assessment / methods
  • Survival Analysis
  • Survival Rate
  • Texas / epidemiology
  • United States / epidemiology