Purpose: Choroidal endothelial cells play a central role in the pathogenesis of age-related macular degeneration (AMD). Protocols for isolating primary choroidal endothelial cells have been described but require access to human donor eyes, which is a limiting factor. Therefore, a conditionally immortalized choroidal endothelial cell (ciChEnC) line has been established.
Methods: Choroidal endothelial cells were selected by magnetic-activated cell sorting and conditionally immortalized using temperature-sensitive simian virus 40 large T antigen and human telomerase. The cell line obtained was characterized based on expression of endothelial marker proteins and endothelial cell-specific responses to various stimuli. Binding of AMD-associated and non-AMD variants of complement factor H in the context of a recombinant CCP6-8 (complement control protein domains 6-8) construct was determined using ELISA.
Results: ciChEnCs maintained morphology and von Willebrand factor and vascular endothelial cadherin expression for up to 27 passages. The cells internalized acetylated low-density lipoprotein, formed tubes on Matrigel, and increased intercellular adhesion molecule-1 expression in response to tumor necrosis factor-α. Cells grew into dense monolayers with barrier function and showed characteristics of choriocapillary cells, such as expression of plasmalemma vesicle-associated protein, human leukocyte antigen ABC, carbonic anhydrase IV, and membrane indentations reflecting fenestrations. ciChEnCs synthesized glycosaminoglycans chondroitin sulfate and the complement factor H ligand heparan sulfate. Interestingly, binding of the AMD-associated 402H variant of factor H to ciChEnC was significantly decreased compared to the 402Y variant.
Conclusions: A novel ciChEnC cell line with choriocapillary characteristics has been established and should greatly facilitate investigation of the pathogenesis of AMD in the context of the choriocapillary microenvironment.