Phosphorylation of the Amino Terminus of the Dopamine Transporter: Regulatory Mechanisms and Implications for Amphetamine Action

Adv Pharmacol. 2018:82:205-234. doi: 10.1016/bs.apha.2017.09.002. Epub 2017 Oct 25.

Abstract

Amphetamines (AMPHs) are potent psychostimulants that are widely used and abused, with profound medical and societal impact. Their actions at dopaminergic neurons are thought to mediate their therapeutic efficacy as well as their liability for abuse and dependence. AMPHs target the dopamine transporter (DAT), the plasmalemmal membrane protein that mediates the inactivation of released dopamine (DA) through its reuptake. AMPHs act as substrates for DAT and are known to cause mobilization of dopamine (DA) to the cell exterior via DAT-mediated reverse transport (efflux). It has become increasingly evident that the mechanisms that regulate AMPH-induced DA efflux are distinct from those that regulate DA uptake. Central to these mechanisms is the phosphorylation of the DAT amino (N)-terminus, which has been repeatedly demonstrated to facilitate DAT-mediated DA efflux, without impacting other aspects of DAT physiology. This review aims to summarize the current status of knowledge regarding DAT N-terminal phosphorylation and its regulation by protein modulators and the membrane microenvironment. A better understanding of these mechanisms may lead to the identification of novel therapeutic approaches that interfere selectively with the pharmacological effects of AMPHs without altering the physiological function of DAT.

Keywords: Dopamine efflux; Kinases; Lipid rafts; Phosphatases; Psychostimulants; Vesicular monoamine transporters.

Publication types

  • Review

MeSH terms

  • Amphetamine / pharmacology*
  • Animals
  • Cell Membrane / drug effects
  • Cell Membrane / metabolism
  • Cellular Microenvironment / drug effects
  • Dopamine / metabolism
  • Dopamine Plasma Membrane Transport Proteins / chemistry*
  • Dopamine Plasma Membrane Transport Proteins / metabolism*
  • Humans
  • Phosphorylation / drug effects

Substances

  • Dopamine Plasma Membrane Transport Proteins
  • Amphetamine
  • Dopamine