Inhibiting the protein neddylation pathway using the NEDD8-activating enzyme inhibitor MLN4924 represents an attractive anticancer strategy having been demonstrated to exhibit promising anticancer efficacy and with tolerable levels of toxicity; however, the mechanism by which MLN4924 inhibits cell proliferation in human esophageal squamous cell carcinoma (ESCC) cells requires further investigation. The present study revealed that MLN4924 treatment led to G2 cell cycle arrest and enhanced the protein stability of Wee1-like protein kinase and cyclin dependent protein kinase inhibitor 1A and B and p27. Furthermore, MLN4924 induced DNA damage and sensitized esophageal cancer cells to cisplatin by enhancing apoptosis. These findings extend the understanding of the function and mechanism of MLN4924 in ESCC and provide further evidence for the future development of neddylation inhibitors in clinical trials of esophageal cancer therapy, either alone or in combination.
Keywords: Cullin-RING ligase; MLN4924; esophageal squamous cell carcinoma; neddylation.