A route to access 3-amino-2,3-dihydrobenzofurans that utilizes microwave-assisted organic synthesis to rapidly generate analogues has been developed. The route begins with an acid-catalyzed, microwave-assisted aldol condensation to generate chalcone intermediates, followed by a Corey-Bakshi-Shibata reduction and subsequent Sharpless asymmetric epoxidation to access stereoisomeric epoxyalcohols. The final step is a one-pot, microwave-assisted, regioselective, acid-catalyzed epoxide opening with various amines followed by an intramolecular nucleophilic aromatic substitution reaction to generate the 3-amino-2,3-dihydrobenzofurans. This route provides ready access to stereochemically and structurally diverse analogues of these flavonoid scaffolds. Additionally, a pilot library was synthesized, and the biological activity diversity of the chalcones and dihydrobenzofurans was explored in human carcinoma cell lines.
Keywords: asymmetric synthesis; benzofuran; chalcone; combinatorial chemistry; microwave chemistry.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.