Allosteric Effector ppGpp Potentiates the Inhibition of Transcript Initiation by DksA

Mol Cell. 2018 Mar 1;69(5):828-839.e5. doi: 10.1016/j.molcel.2018.01.035. Epub 2018 Feb 22.

Abstract

DksA and ppGpp are the central players in the stringent response and mediate a complete reprogramming of the transcriptome. A major component of the response is a reduction in ribosome synthesis, which is accomplished by the synergistic action of DksA and ppGpp bound to RNA polymerase (RNAP) inhibiting transcription of rRNAs. Here, we report the X-ray crystal structures of Escherichia coli RNAP in complex with DksA alone and with ppGpp. The structures show that DksA accesses the template strand at the active site and the downstream DNA binding site of RNAP simultaneously and reveal that binding of the allosteric effector ppGpp reshapes the RNAP-DksA complex. The structural data support a model for transcriptional inhibition in which ppGpp potentiates the destabilization of open complexes by DksA. This work establishes a structural basis for understanding the pleiotropic effects of DksA and ppGpp on transcriptional regulation in proteobacteria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allosteric Regulation
  • Catalytic Domain
  • Crystallography, X-Ray
  • DNA-Directed RNA Polymerases / chemistry
  • DNA-Directed RNA Polymerases / metabolism
  • Escherichia coli / chemistry*
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / metabolism
  • Guanine Nucleotides / chemistry*
  • Guanine Nucleotides / metabolism
  • Models, Chemical*
  • Models, Molecular*
  • Transcriptome / physiology

Substances

  • Escherichia coli Proteins
  • Guanine Nucleotides
  • dksA protein, E coli
  • DNA-Directed RNA Polymerases