Background: Litsea cubeba (Lour.) Pers. is an important economic plant that is rich in valuable essential oil. The essential oil is often used as a raw material for perfumes, food additives, insecticides and bacteriostats. Most of the essential oil is contained in the fruit, and the quantity and quality of fruit are dependent on the flowers. To explore the molecular mechanism of floral bud differentiation, high-throughput RNA sequencing was used to detect differences in the gene expression of L. cubeba female and male floral buds at three differentiation stages.
Results: This study obtained 160.88 Gbp of clean data that were assembled into 100,072 unigenes, and a total of 38,658 unigenes were annotated. A total of 27,521 simple sequence repeats (SSRs) were identified after scanning the assembled transcriptome, and the mono-nucleotide repeats were predominant, followed by di-nucleotide and tri-nucleotide repeats. A total of 12,559 differentially expressed genes (DEGs) were detected from the female (F) and male (M) floral bud comparisons. The gene ontology (GO) databases revealed that these DEGs were primarily contained in "metabolic processes", "cellular processes", and "single-organism processes". The Kyoto Encyclopedia of Genes and Genomes (KEGG) databases suggested that the DEGs belonged to "plant hormone signal transduction" and accounted for a relatively large portion in all of these comparisons. We analyzed the expression level of plant hormone-related genes and detected the contents of several relevant plant hormones in different stages. The results revealed that the dynamic changes in each hormone content were almost consistent with the expression levels of relevant genes. The transcription factors selected from the DEGs were analyzed. Most DEGs of MADS-box were upregulated and most DEGs of bZIP were downregulated. The expression trends of the DEGs were nearly identical in female and male floral buds, and qRT-PCR analysis revealed consistency with the transcriptome data.
Conclusions: We sequenced and assembled a high-quality L. cubeba floral bud transcriptome, and the data appeared to be well replicated (n = 3) over three developmental time points during flower development. Our study explored the changes in the contents of several plant hormones during floral bud differentiation using biochemical and molecular biology techniques, and the changes in expression levels of several flower development related transcription factors. These results revealed the role of these factors (i.e., hormones and transcription factors) and may advance our understanding of their functions in flower development in L. cubeba.
Keywords: DEGs; Floral bud differentiation; Genome Report; Hormone; Litsea cubeba; RNA sequencing; Transcription factors.
Copyright © 2018 He et al.