Positioning a Novel Transcutaneous Bone Conduction Hearing Implant: a Systematic Anatomical and Radiological Study to Standardize the Retrosigmoid Approach, Correlating Navigation-guided, and Landmark-based Surgery

Otol Neurotol. 2018 Apr;39(4):458-466. doi: 10.1097/MAO.0000000000001734.

Abstract

Hypothesis: Anatomical and radiological evaluation improves safety and accuracy of the retrosigmoid approach for positioning a transcutaneous bone conduction implant and provides anatomical reference data for standardized, landmark-based implantation at this alternative site.

Background: The primary implantation site for the floating mass transducer of a novel bone conduction hearing implant is the mastoid. However, anatomical limitations or previous mastoid surgery may prevent mastoid implantation. Therefore, the retrosigmoid approach has been introduced as an alternative.

Methods: Mastoid and retrosigmoid implantation sites were radiologically identified and evaluated in preoperative computed tomography scans of anatomical head specimens. Navigation-guided implantation was then performed in the retrosigmoid site (n = 20). The optimal retrosigmoid position was determined in relation to both the asterion and the mastoid notch as surgical landmarks in an anatomical coordinate system.

Results: Preoperative radiological analysis revealed spatial limitations in the mastoid in 45% of the specimens. Navigation-guided retrosigmoid implantation was possible without affecting the sigmoid sinus in all the specimens. The optimal implantation site was located 1.9 ± 0.1 cm posterior/1.7 ± 0.1 cm inferior to the asterion and 3.3 ± 0.2 cm posterior/2.1 ± 0.1 cm superior to the mastoid notch.Retrosigmoid skull thickness was 6.6 ± 0.4 mm, measured anatomically, 7.0 ± 0.4 mm, measured radiologically and 6.7 ± 0.5 mm, measured with the navigation software.

Conclusion: The navigation-guided retrosigmoid approach seemed to be a reliable procedure in all the specimens. Measurements of bone thickness revealed the need for spacers in 95% of the specimens. Reference coordinates of the optimal implantation site are provided and can confirm image-guided surgery or facilitate orientation if a navigation system is not available.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Bone Conduction
  • Bone-Anchored Prosthesis*
  • Cadaver
  • Female
  • Hearing Aids*
  • Humans
  • Male
  • Middle Aged
  • Otorhinolaryngologic Surgical Procedures / methods
  • Otorhinolaryngologic Surgical Procedures / standards
  • Skull / anatomy & histology*
  • Skull / diagnostic imaging
  • Skull / surgery*
  • Surgery, Computer-Assisted / methods*
  • Surgery, Computer-Assisted / standards
  • Tomography, X-Ray Computed / methods