Reported here is the chelate effect as a design principle for tuning heterogeneous catalysts for electrochemical CO2 reduction. Palladium functionalized with a chelating tris-N-heterocyclic carbene (NHC) ligand (Pd-timtmbMe ) exhibits a 32-fold increase in activity for electrochemical reduction of CO2 to C1 products with high Faradaic efficiency (FEC1 =86 %) compared to the parent unfunctionalized Pd foil (FE=23 %), and with sustained activity relative to a monodentate NHC-ligated Pd electrode (Pd-mimtmbMe ). The results highlight the contributions of the chelate effect for tailoring and maintaining reactivity at molecular-materials interfaces enabled by surface organometallic chemistry.
Keywords: CO2 reduction; N-heterocyclic carbenes; electrocatalysis; palladium; surface chemistry.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.